Impaired intestinal NHE3 activity in the PDK1 hypomorphic mouse.
نویسندگان
چکیده
In vitro experiments have demonstrated the stimulating effect of serum- and glucocorticoid-inducible kinase (SGK)1 on the activity of the Na+/H+ exchanger (NHE3). SGK1 requires activation by phosphoinositide-dependent kinase (PDK)1, which may thus similarly play a role in the regulation of NHE3-dependent epithelial electrolyte transport. The present study was performed to explore the role of PDK1 in the regulation of NHE3 activity. Because mice completely lacking functional PDK1 are not viable, hypomorphic mice expressing approximately 20% of PDK1 (pdk1(hm)) were compared with their wild-type littermates (pdk1(wt)). NHE3 activity in the intestine and PDK1-overexpressing HEK-293 cells was estimated by utilizing 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein fluorescence for the determination of intracellular pH. NHE activity was reflected by the Na+-dependent pH recovery from an ammonium prepulse (DeltapH(NHE)). The pH changes after an ammonium pulse allowed the calculation of cellular buffer capacity, which was not significantly different between pdk1(hm) and pdk1(wt) mice. DeltapH(NHE) was in pdk1(hm) mice, only 30 +/- 6% of the value obtained in pdk1(wt) mice. Conversely, DeltapH(NHE) was 32 +/- 7% larger in PDK1-overexpressing HEK-293 cells than in HEK-293 cells expressing the empty vector. The difference between pdk1(hm) and pdk1(wt) mice and between PDK1-overexpressing and empty vector-transfected HEK cells, respectively, was completely abolished in the presence of the NHE3 inhibitor S3226 (10 microM). In conclusion, defective PDK1 expression leads to significant impairment of NHE3 activity in the intestine, pointing to a role of PDK1-dependent signaling in the regulation of NHE-mediated electrolyte transport.
منابع مشابه
Pyk and ERK your way to the hub by taking a RSK 2. Focus on "Regulation of NHE3 by lysophosphatidic acid is mediated by phosphorylation of NHE3 by RSK2".
Na(+)/H(+) exchange by Na(+)/H(+) exchanger 3 (NHE3) is a major route of sodium absorption in the intestine and kidney. We have shown previously that lysophosphatidic acid (LPA), a small phospholipid produced ubiquitously by all types of cells, stimulates NHE3 via LPA5 receptor. Stimulation of NHE3 activity by LPA involves LPA5 transactivating EGF receptor (EGFR) in the apical membrane. EGFR ac...
متن کاملRegulation of NHE3 by lysophosphatidic acid is mediated by phosphorylation of NHE3 by RSK2
No YR, He P, Yoo BK, Yun CC. Regulation of NHE3 by lysophosphatidic acid is mediated by phosphorylation of NHE3 by RSK2. Am J Physiol Cell Physiol 309: C14–C21, 2015. First published April 8, 2015; doi:10.1152/ajpcell.00067.2015.—Na /H exchange by Na /H exchanger 3 (NHE3) is a major route of sodium absorption in the intestine and kidney. We have shown previously that lysophosphatidic acid (LPA)...
متن کاملSerum- and glucocorticoid-induced kinase 3 in recycling endosomes mediates acute activation of Na+/H+ exchanger NHE3 by glucocorticoids
Na(+)/H(+) exchanger 3 (NHE3) is the major Na(+) transporter in the intestine. Serum- and glucocorticoid-induced kinase (SGK) 1 interacts with NHE regulatory factor 2 (NHERF2) and mediates activation of NHE3 by dexamethasone (Dex) in cultured epithelial cells. In this study, we compared short-term regulation of NHE3 by Dex in SGK1-null and NHERF2-null mice. In comparison to wild-type mice, loss...
متن کاملNHERF2 is necessary for basal activity, second messenger inhibition, and LPA stimulation of NHE3 in mouse distal ileum.
To test the hypothesis that Na(+)/H(+) exchanger (NHE) regulatory factor 2 (NHERF2) is necessary for multiple aspects of acute regulation of NHE3 in intact mouse small intestine, distal ileal NHE3 activity was determined using two-photon microscopy/SNARF-4F in a NHERF2-null mouse model. The NHERF2-null mouse ileum had shorter villi, deeper crypts, and decreased epithelial cell number. Basal rat...
متن کاملReduced NHE3 activity results in congenital diarrhea and can predispose to inflammatory bowel disease.
TO THE EDITORS: With great interest we read the review just published in the American Journal of Physiology-Regulatory, Integrative and Comparative Physiology on “Novel developments in differentiating the role of renal and intestinal sodium hydrogen exchanger 3” by Dominguez Rieg and colleagues (2). The authors review recent studies that address the impact of NHE3 loss of function on renal and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 291 5 شماره
صفحات -
تاریخ انتشار 2006